ФЕДЕРАЛЬНО-ОКРУЖНОЕ СОРЕВНОВАНИЕ МОЛОДЫХ ИССЛЕДОВАТЕЛЕЙ РОССИЙСКОЙ НАУЧНО-СОЦИАЛЬНОЙ ПРОГРАММЫ «ШАГ В БУДУЩЕЕ» ПО УРАЛЬСКОМУ ФЕДЕРАЛЬНОМУ ОКРУГУ

Российская Федерация г. Челябинск

Анализ возможности создания умной системы эвакуации при пожаре и задымлении

Техника и инженерные области знаний

Автор:

Волошин Илья Владиславович XMAO-Югра Тюменская область, пгт.Березово, МБОУ «Березовская средняя общеобразовательная школа», класс 11

Научный руководитель:

Кулбаева Мария Михайловна, учитель информатики первой категории МБОУ «Березовская средняя общеобразовательная школа»

Содержание

Аннотация	3
План исследования	4
Научная статья	6
Актуальность	6
Выявление необходимости создания системы в результате опроса	8
Перспективный принцип работы Saver'а	10
Описание сенсоров, расходных материалов, модулей	10
Основной фрагмент блок-схемы макета умной системы Saver и описание её работы	12
Этапы создания и тестирование системы умной системы Saver	13
Перспективы развития	14
Заключение	14
Список литературы	15
Приложение 1. Первый программный код	16
Приложение 2. Программа, по которой работает система	18
Приложение 3. Отзыв на исследовательскую работу начальника пожарной части пгт. Березово	20

Анализ возможности создания умной системы эвакуации при пожаре и задымлении

Волошин Илья Владиславович,

Россия, XMAO-Югра, Тюменская область, пгт. Березово Муниципальное бюджетное образовательное учреждение «Березовская средняя общеобразовательная школа», класс 11

Аннотация

В настоящее время вопрос безопасности жизни человека очень актуален. Поэтому исследователем была выдвинута идея о создании такой системы, которая бы в экстренной ситуации показывала направление движения людей из загоревшегося или задымлённого помещения максимально коротким, а главное безопасным путём.

Возникает вопрос: «Возможно ли создать прототип умной системы эвакуации людей при пожаре, задымлении здания на базе микроконтроллеров Arduino, подобрать необходимые для данного проекта датчики и сенсоры и разобраться в их работе?»

Поэтому создание рабочего прототипа умной системы эвакуации при пожаре и задымлении на базе микроконтроллеров Arduino, а также разработка программы для работы системы в оболочке ArduinoIDE стало целью работы.

Гипотеза исследования: если исследовать микроконтроллеры и датчики Arduino, а также программную оболочку ArduinoIDE, то можно создать макет умной системы эвакуации людей при пожаре, задымлении здания, так как она может послужить прототипом для создания и применения подобных систем в жизни.

Для достижения цели и доказательства гипотезы исследования необходимо решить следующие задачи: 1) изучить и проанализировать научную и учебную литературу по теме исследования; 2) провести сравнительный анализ датчиков, используемых в конструкции умной системы эвакуации людей при пожаре и задымлении зданий; 3) разработать конструкцию макета и программный код для выполнения задач; 4) провести оценку полученных результатов.

В ходе решения поставленных задач применялись следующие методы исследования: теоретического и эмпирического уровня.

Исследовательская работа проводилась один год. В данной исследовательской работе изучено применение существующих интегрированных систем безопасности. Исследователь взял интервью у капитана отделения пожарной части, которое ещё раз доказало необходимость работы в данной области, затем, используя возможности микроконтроллеров Arduinou сенсоров, собрал базовую конструкцию модели умной системы эвакуации людей при пожаре и задымлении зданий, а также изучил программную оболочку ArduinoIDE и создал для нее программу. Таким образом, гипотеза исследования подтвердилась. Цель исследования достигнута.

Анализ возможности создания умной системы эвакуации при пожаре и задымлении

Волошин Илья Владиславович,

Россия, XMAO-Югра, Тюменская область, пгт. Березово Муниципальное бюджетное образовательное учреждение «Березовская средняя общеобразовательная школа», класс 11

План исследования

Проблема исследования работы заключается в том, что необходимо рассмотреть возможность создания умной системы эвакуации людей при пожаре или задымлении зданий на базе микроконтроллеров Arduino и программной оболочки ArduinoIDE для создания программы. Поэтому актуальность данного исследования состоит в анализе использования микроконтроллеров Arduino, а также их программирование в оболочке ArduinoIDE.

Цель исследования – создание модели умной системы эвакуации людей при пожаре или задымлении зданий и программного обеспечения ArduinoIDE, чтобы она получала данные с различных датчиков и в зависимости от полученных данных показывала нужное направление стрелки.

Объект исследования – умная система эвакуации людей при пожаре, задымлении здания.

Предмет исследования – микроконтроллеры Arduino и их программирование.

План работы над исследованием представлен в виде таблицы:

Этапы	Виды деятельности	Сроки исполнения	Результат исследования
1	Работа с теорией Выявление теоретического обоснования и актуальности темы	1-я неделя декабря 2018	Выбранная тема для проекта является актуальной в наше время.
2.	Подготовка к исследованию Выявление функциональных возможностей микроконтроллеров Arduinou программного обеспечения ArduinoIDE	Декабрь 2018г.	Знакомство с функциональными возможностями микроконтроллеров Arduino, исследование их возможностей и программного обеспечения ArduinoIDE
3.	Проведение	Декабрь-	Отдельно друг от друга собраны части

3	исследования 1. Создание конструкции системы	Январь 2019г.	макета и протестированы. Работает успешно.
	2. Процесс алгоритмизации системы		Написаны программы отдельно для каждого блока макеты. Работает успешно
	3. Тестирование и улучшение конструкции и алгоритма работы механизма		Отдельные части макета собраны в единую систему, и написана программа для работы макета. Работает неверно.
4.	Обобщение теории и практики Исправление ошибок и замена некоторых комплектующих для макета	Сентябрь 2019	Окончательный вариант системы работает удовлетворительно. Требуется лишь дальнейшее развитее.
5.	Оформление исследовательской работы	Октябрь 2019	Работа оформлена

Списокисточников:

- 1. http://wiki.amperka.ru/ информация по Arduinoи периферии.
- 2. http://xn--18-6kcdusowgbt1a4b.xn--p1ai/- подключение к Arduino датчиков и их программирование.
- 3. https://www.arduinolibraries.info/libraries/ библиотеки Arduino
- 4. https://alexgyver.ru/arduino-first/ множество полезной информации, примеры работы с Arduino.

Анализ возможности создания умной системы эвакуации при пожаре и задымлении

Волошин Илья Владиславович,

Россия, ХМАО-Югра, Тюменская область, пгт. Березово Муниципальное бюджетное образовательное учреждение «Березовская средняя общеобразовательная школа», класс 11

Научная статья

Актуальность

Одним из важнейших вопросов человечества всегда оставался и остаётся вопрос безопасности. Люди придумывают различные датчики, сигнализации и другие противопожарные средства. Но до сих пор люди погибают при пожарах. Особенно это заметно в различных крупных и людных зданиях: больницах, торговых центрах, бизнес центрах и т.д.

В последнее время в новостях часто показывают чрезвычайные ситуации, связанные с пожарами и обвалами крупных зданий. Мы задумались, почему же погибает столько людей, несмотря на такой колоссальный труд работников спасательных служб. Оказалось, большинство смертей происходит из-за паники, давки и дезориентации во время эвакуации.

Мы задали себе вопрос: «А как можно улучшить систему эвакуации, чтобы людям было легче находить спасательные выходы, и они были уверены, что, продвигаясь по символам на стене, они не придут к горящему, задымлённому или обваленному коридору?» Мы решили создать рабочий макет умной системы эвакуации людей при пожаре, задымлении здания и запрограммировать функции его работы.

Во всех общественных местах на стенах сейчас расклеены планы эвакуации и стрелками указаны направления к запасным выходам. Таким образом, проблема исследования нашей работы заключается в том, что необходимо рассмотреть возможность создания прототипа умной системы эвакуации людей при пожаре, задымлении здания на базе микроконтроллеров Arduino, подобрать, необходимые для данного проекта, датчики и сенсоры и разобраться в их работе. Поэтому актуальность данного исследования состоит в анализе использования микроконтроллеров Arduino и датчиков для них, а также программирование в оболочке ArduinoIDE.

Поэтому, создание рабочего прототипа умной системы эвакуации при пожаре и задымлении на базе микроконтроллеров Arduino, а также разработка программы для работы системы в оболочке ArduinoIDE стало целью работы.

Объект исследования - умная система эвакуации людей при пожаре, задымлении злания.

Предмет исследования - микроконтроллеры Arduino и их программирование.

Гипотеза исследования: если исследовать микроконтроллеры и датчики Arduino, а так же программную оболочку ArduinoIDE, то можно создать макет умной системы эвакуации людей при пожаре, задымлении здания, так как она может послужить прототипом для создания и применения подобных систем в жизни.

Для достижения цели и доказательства гипотезы исследования необходимо решить следующие задачи:

- изучить и проанализировать научную и учебную литературу;
- провести сравнительный анализ датчиков, сенсоров, используемых в конструкции умной системы эвакуации людей при пожаре и задымлении зданий;
 - разработать конструкцию макета и программный код для выполнения задач;
 - провести оценку полученных результатов.
 В ходе решения поставленных задач применялись следующие методы исследования:
- *методы теоретического уровня:* изучение, обобщение, абстрагирование, формализация;
- *методы эмпирического уровня:* наблюдение, эксперимент, анализ, моделирование, синтез, индукция.

Теоретическая значимость данной работы определяется тем, что в результате проведённого исследования выявлены назначение и применение деталей, датчиков и сенсоров, а также управление и работа с ними при создании проектов на базе Arduino.

Практическая значимость предлагаемого исследования состоит в том, чтобы выявить возможность использования микроконтроллеров Arduino и соответствующих сенсоров, а также программного обеспечения ArduinoIDE для создания систем, способных решать задачи, связанные с пожарной безопасностью.

Выявление необходимости создания системы в результате опроса

Для того чтобы выявить необходимость создания подобной системы, был проведён опрос среди людей разных возрастов и из разных населённых пунктов Тюменской области. В опросе приняло участие более 250-ти человек, и по результатам опроса была создана диаграмма (рисунок 1)

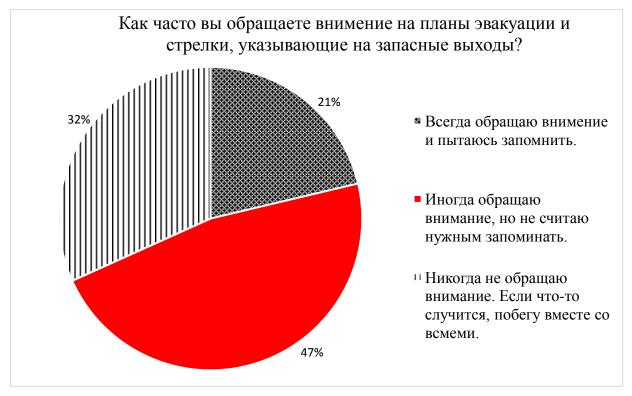


Рис. 1. Опрос

Интервью с начальником пожарной части пгт. Берёзово Ушаровым Евгением Александровичем

При встрече с начальником пожарной части были заданы следующие вопросы:

• Как вы считаете, из-за чего происходит большинство несчастных случаев при эвакуации людей из горящего или задымлённого здания?

Ответ: «Захламление путей эвакуации, плохая видимость, не всегда открыты эвакуационные выходы, халатность людей, неисправность системы оповещения, дезориентация людей и паника, незнание куда следует идти».

• На ваш взгляд, стрелки, показывающие направление к запасному выходу и планы эвакуации, делают всю необходимую работу, или эта система нуждается в доработке?

Ответ: Человеку трудно сориентироваться, где он в данный момент находится в здании. Особенно если этот человек в здании первый раз. Например, работники торговых центров, больниц, бизнес центров знают, где расположены ближайшие к ним эвакуационные выходы, обычные посетители в большинстве случаев не осведомлены в этом

плане. Что касается стрелок, то я ставлю под вопрос их расположение и функционал (см. третий вопрос).

• Какие советы вы бы дали человеку, который бы занялся данным актуальным вопросом, и есть ли у Вас какие-то пожелания?

Ответ: Мне бы хотелось предложить располагать стрелки на полу. Ведь, как всем известно, дым подымается вверх. И даже по технике безопасности люди, при пожаре или задымлении здания, должны встать на четвереньки, прикрыть лицо тканью, желательно смоченной водой, и таким образом двигаться к выходу. Но смотреть на эти настенные указатели, которые, как правило, висят на уровне глаз, крайне неудобно, и это затрудняет и замедляет движение. А если бы указатели находились на полу и привлекали к себе внимание, то человеку было бы гораздо легче найти выход и избежать трагедии.

• Как вы относитесь к всеобщей компьютеризации и считаете ли вы, что это может помочь спасти человеческие жизни?

Ответ: А почему нет? Сейчас есть множество датчиков, которые определяют повышение температуры, уровень содержания вредных веществ в воздухе. Эти приборы гораздо быстрее определяют предельно допустимые нормы и реагируют в случае опасности. Поэтому я, конечно же, отношусь к их внедрению и применению положительно. Никто не отменял человеческий фактор. Никто не защищён от ошибок. Да и если система дала ложный вызов, то мы лучше десять раз отреагируем и проверим, всё ли в порядке.

Основная наша работа— это спасение граждан, и применение новых компьютеризированных систем, я считаю, будет большим плюсом.

Евгений Александрович согласился, что имеющиеся пожарные системы безопасности не совершенны и нуждаются в доработке. Также был проанализирован рынок интегрированных систем безопасности (далее ИСБ). ИСБ — совокупность технических средств (двух или более взаимоувязанных автоматизированных систем), предназначенных для построения систем охранной сигнализации, пожарной автоматики, контроля и управления доступом и телевизионного наблюдения (охранного телевидения), которые обладают технической, информационной, программной и эксплуатационной совместимостью так, что эту совокупность можно рассматривать как единую автоматизированную систему.

Из этого определения также следует, что ИСБ - это система, обеспечивающая защиту от нескольких видов угроз.

Но, по нашему мнению, эти системы обладают устаревшим функционалом. Именно поэтому предлагается их усовершенствовать. Следует добавить этим системам возможность направлять людей в нужном направлении при экстремальной ситуации.

Перспективный принцип работы Saver'a

В здании оборудуется серверная комната, обеспеченная дополнительной системой энергоснабжения, которая бы предотвратила отключение системы при перебоях в питании. Так же в серверной комнате устанавливается автоматическая система тушения возгораний. В пол здания монтируются светодиодные матрицы, батареи резервного питания, и создаётся единая цепь. По всему периметру распределяются комплексы сенсоров, включающие в себя сенсоры газа, огня, температуры и яркости освещения. Основной частью Saver'а является его искусственный интеллект, способный запоминать планировку здания, воспринимать данные с сенсоров и, исходя из этих данных, планировать наиболее безопасный и короткий путь до пожарных выходов. Таким образом, будут исключены моменты, когда человек, продвигаясь по направляющим стрелкам, натыкается на охваченный огнём коридор, заблокированную стену или что-либо, преграждающее его путь и отнимающее его время, шансы на спасение.

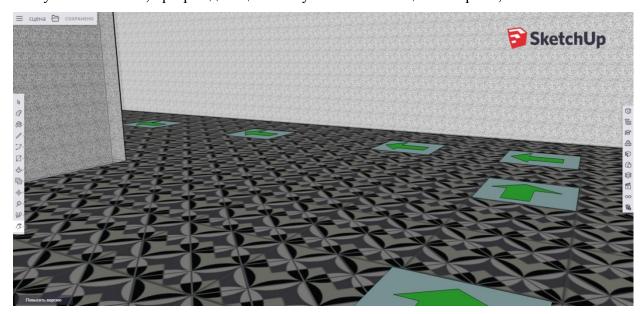


Рис. 2. Вид установленной системы

Описание сенсоров, расходных материалов, модулей

Для полноценной работы умной системы пожарной безопасности Saver необходимы более дорогие и качественные компоненты. Поэтому в данной работе представлен макет-прототип системы на базе платы ArduinoNano и сенсоров к ней. Для того чтобы умная система Saver начала функционировать необходим набор расходных материалов, которые представлены в таблице 1.

Комплектующие умной системы Saver

Комплектующие	Описание
	ArduinoNano — мозг макета системы умной системы эвакуации людей при пожаре и задымлении зданий. На ней располагается микроконтроллер ATmega328 (ArduinoNano 3.0) или ATmega168 (ArduinoNano 2.x) и 30 пинов для различных задач.
(Цена: 150 рублей.)	Датчик MQ-2определит концентрацию углеводородных газов
(Цена: 100 рублей)	(пропан, метан, н-бутан), дыма (взвешенных частиц, являющихся результатом горения) и водорода в окружающей среде. Принцип работы датчика основан на изменении сопротивления тонкопленочного слоя диоксида олова SnO2
	при контакте с молекулами определяемого газа.
(Цена: 2 рубля)	Фоторезистор - это резистор, сопротивление которого зависит от силы падающего света. Он сделан на основе фотоэлектрического эффекта полупроводника. Если падающий свет интенсивный, его сопротивление уменьшается; если падающий свет слабый, сопротивление увеличивается.
	Датчик пламени основан на том принципе, что инфракрасные лучи очень чувствительны к пламени. Он имеет инфракрасную приемную трубку, специально предназначенную для обнаружения огня, а затем преобразования яркости пламени в сигнал колеблющегося уровня. Затем сигналы поступают в центральный процессор и
(Цена: 7 рублей)	обрабатываются соответствующим образом.
LM35 1 4-20V 2 OUT 3 GND	LM35 - это обычный и простой в использовании датчик температуры. Не требует другого оборудования. Для этого нужен аналоговый порт, чтобы он работал. Трудность заключается в компиляции кода для преобразования аналогового значения, которое он считывает, в температуру по Цельсию.
, , , , , , , , , , , , , , , , , , ,	
(Цена: 25 рублей) (Цена: 470 рублей)	Точечная матрица 8 * 8 состоит из шестидесяти четырех светодиодов, каждый из которых расположен в точке пересечения строки и столбца. Когда электрический уровень определенного ряда равен 1, а электрический уровень определенного столбца равен 0, соответствующий светодиод будет гореть.
	Резисторы различного наминала.

Продолжение таблицы 1

Комплектующие	Описание
	Провода.
	Светодиоды.

Основной фрагмент блок-схемы макета умной системы Saver и описание её работы

Макет представляет собой плату ArduinoNano и подключённые к ней сенсоры: сенсор температуры LM35, сенсор открытого пламени, а также восемь светодиодов (рисунок 3).

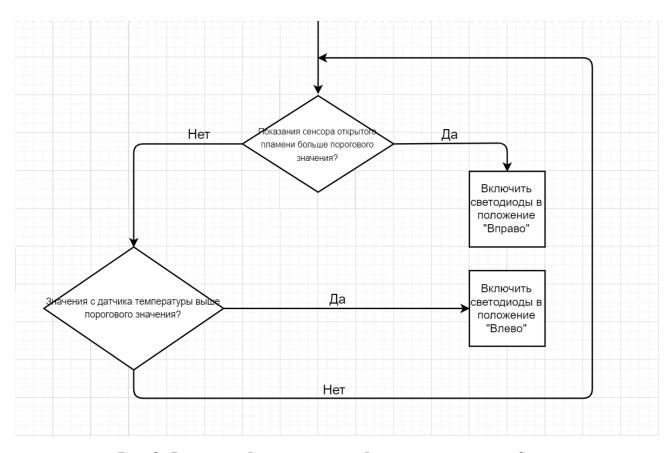


Рис. 3. Фрагмент блок – схемы работы умной системы Saver

Работать макет должен по такому алгоритму: ArduinoNano постоянно обрабатывает данные с сенсоров, если сенсор температуры показывает значения более порогового или сенсор открытого пламени засёк источник огня, то светодиоды загораются в виде стрелки,

указывающей налево или направо в зависимости от того, с какого датчика пришли значения (приложение 1).

Этапы создания и тестирование системы умной системы Saver

9man 1

Собран макет из комплектующих: ArduinoNano, фоторезистора, датчика температуры LM-35, сенсора открытого пламени, сенсора газа MQ-2 и светодиодной матрицы 8*8.

Написан программный код (приложение 1), но возникла проблема: на матрице загорались светодиоды независимо от показаний датчиков или сенсоров (рисунок 4). Проблему решить не удалось.

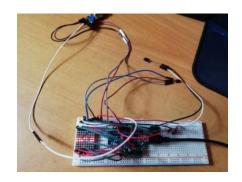


Рис. 4. Тест 1 (неудовлетворительный)

Эman 2

После долгих опытов и корректировки программного кода было решено заменить светодиодную матрицу 8*8 на восемь независимых светодиодов в целях упрощения создания макета. При первом включении плата сгорела, так как была нарушена полярность подключения к источнику питания, вследствие чего произошло короткое замыкание (тест № 2).

Эman 3

Собран новый макет умной системы Saver: сенсор открытого пламени расположен

слева от «стрелки – указателя», а датчик температуры – справа; написан программный код (приложение 2). Тестирование № 3 (рисунок 5) показало, что при обнаружении сенсором открытого пламени стрелка из светодиодов указала направление движения «Вправо», а при повышении температуры до критического показателя, датчик температуры отправляет сигнал микропроцессору и стрелка указывает направление «Влево».

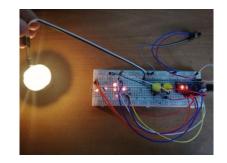
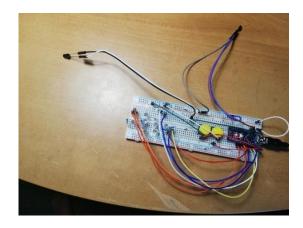


Рис. 5. Тест 3 (удовлетворительный)


При этом были введены переменные: flamemax - настраиваемая переменная для калибровки сенсора открытого пламени, tempmax - настраиваемая переменная для калибровки датчика температуры.

Экспериментальным путем были подобраны пороговые значения, при превышении которых микропроцессор начинает управлять направлением стрелки. В наших

экспериментальных условиях пороговое значение для сенсора отрытого пламени равно 15, а для датчика температуры – 70.

В программном коде это выглядит следующим образом: intflamemax = 15; // настраиваемая переменная для калибровки сенсора открытого пламени inttempmax = 70; // настраиваемая переменная для калибровки датчика температуры

Данные переменные требуют персональной настройки под условия каждого помешения.

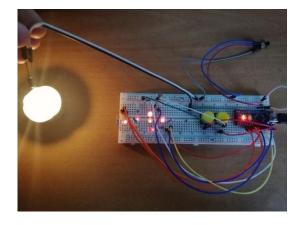


Рис. 6. Макет в выключенном состоянии

Рис. 7. Макет в работающем состоянии

Перспективы развития

В дальнейшем планируется заменить светодиоды на светодиодные матрицы 8*8, доработать макет, разработать алгоритм для полноценной работы системы, то есть, чтобы она «знала» план здания и могла определять направление стрелки в зависимости от показаний с датчиков. Планируется доработать программный код до уровня сравнения показателей в течение времени, если будет происходить их резкое увеличение, то макет умной системы Saver будет сигнализировать о необходимости эвакуации, выбирать наиболее кротчайший и безопасный путь.

Заключение

В ходе изучения и анализа научной, учебной литературы по теме исследования выяснили особенности поведения человека в экстренной ситуации, что лучше использовать для концентрации внимания человека, какие минусы и недоработки имеют современные системы пожарной безопасности.

После сравнения датчиков было принято решение использовать датчик температуры LM35, сенсор открытого пламени.

Был собран макет системы и написана программа для её работы.

Собрана информация по пожарной безопасности, работе с Arduino и её сенсорами.

Таким образом, если использовать микроконтроллеры и датчики Arduino, а также программную оболочку ArduinoIDE, то можно создать макет умной системы эвакуации людей при пожаре, задымлении здания, так как она может послужить прототипом для создания и применения подобных систем в жизни. Гипотеза исследования подтвердилась. Цель исследования достигнута.

Список литературы:

- 1. <a href="https://zen.yandex.ru/media/qui_habitat/cvetovoi-kod-kupera-koncepciia-gotovnosti-k-chrezvychainoi-situacii-5adbebdf77d0e6f74d3d21cb «Цветовой код» Джеффа Купера.
- 2. http://marketnotes.ru/social/visual-attention/ статья о том, как привлечь внимание человека.
- 3. http://www.psyarticles.ru/view_post.php?id=105 внимание как психический познавательный процесс.
- 4. https://cyberleninka.ru/article/v/psihologicheskie-osobennosti-povedeniya-naseleniya-pri-chrezvychaynyh-situatsiyah научная работа по поведению человека в экстренной ситуации.
- 5. https://xn--j1ahfl.xn--p1ai/library/vliyanie_tcveta_na_vospriyatie_informatcii_004300.html
 проектно-исследовательская работа «Влияние цвета на восприятие информации»
- 6. https://websot.jimdo.com/%D1%81%D1%83%D0%BE%D1%82/%D0%BE%D0%B5%D1 о пожарной безопасности в местах скопления людей.
- 7. http://www.consultant.ru/document/cons_doc_LAW_72806/7037b061e82b7009c6081b29c1
 http://www.consultant.ru/document/cons_doc_LAW_72806/7037b061e82b7009c6081b29c1
 http://www.consultant.ru/document/cons_doc_LAW_72806/7037b061e82b7009c6081b29c1
 https://www.consultant.ru/document/cons_doc_LAW_72806/7037b061e82b7009c6081b29c1
 https://www.consultant.ru/document/cons_doc_LAW_72806/7037b061e82b7009c1
 https://www.cons_doc_LAW_72806/7037b06
- 8. https://www.fire-service.ru/informaciya/informaciya-po-pozharnoj-bezopasnost.html о пожарной безопасности, как о бизнесе.
 - 9. http://www.2pb.ru/ всё для обеспечения пожарной безопасности.
 - 10. http://www.garant.ru/actual/pojar/ актуальное о пожарной безопасности.
- 11. https://www.youtube.com/user/AmperkaRu видеоуроки по работе с Arduino и датчиками / сенсорами.
 - 12. https://alexgyver.ru/arduino-first/ информация, примеры работы с Arduino.
- 13. Arduino и Raspberry Pi в проектах Internet of Things. 2-е изд., перераб.и доп. СПб.: БХВ-Петербург, 2018 432 с.: ил. (Электроника)
- 14. Занимательная электроника. 5-е изд. перераб.и доп. СПб.: БХВ-Петербург, 2018 679 с.: ил. (Электроника)
- 15. Изучаем Arduino: инструменты и методы технического волшебства Пер. с англ.— СПб.: БХВ-Петербург, 2015 336 с.: ил.

```
Первый программный код
#define DANGE { \
   \{0, 0, 1, 1, 1, 1, 0, 0\},\
   \{0, 1, 1, 1, 1, 1, 1, 0\}, \setminus
   \{1, 1, 1, 1, 1, 1, 1, 1, 1\},\
   \{0, 0, 0, 1, 1, 0, 0, 0\},\
   \{0, 0, 0, 1, 1, 0, 0, 0\},\
   \{0, 0, 0, 1, 1, 0, 0, 0\},\
   \{0, 0, 0, 1, 1, 0, 0, 0\}
bytecol = 0;
byteleds[8][8];
intpins[17]= {-1, 5, 4, 3, 2, 14, 15, 16, 17, 13, 12, 11, 10, 9, 8, 7, 6}; //сколько подключений и
куда
int cols[8] = {pins[13], pins[3], pins[4], pins[10], pins[06], pins[11], pins[15], pins[16]}; //столбцы
int rows[8] = {pins[9], pins[14], pins[8], pins[12], pins[1], pins[7], pins[2], pins[5]}; //строки
constintnumPatterns = 1; // кол-ворисунков
byte patterns[numPatterns][8][8] = \{
 DANGE // "имена" рисунков
intpattern = 0;
intflame=A2;
                        // обозначаем, что к аналоговому порту 4 подключен сенсор огня
intpotPin = A1;
                      // инициализируем аналоговый выход 5 для датчика температуры LM35
intsensePin = A0;
                      // инициализируем аналоговый выход 6 для фоторезистора
intphot=0:
intgas=0;
intval=0;
                                   // определяем переменную
                                   // определяем переменную
intdat=0;
intFl=0;
void setup() {
for (inti = 1; i \le 16; i++) {
pinMode(pins[i], OUTPUT); //обозначаем инф.выходы
 }
setPattern(pattern);
pinMode(flame,INPUT);
                                      // обозначаем 4 аналоговый выход сенсора огня как вход
pinMode(potPin, INPUT);
pinMode(sensePin, INPUT);
voidsetPattern(int pattern) {
for (inti = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
leds[i][j] = patterns[pattern][i][j];
  }
 }
void display() {
digitalWrite(cols[col], HIGH);
col++;
```

```
if (col == 8) {
col = 0;
}
for (int row = 0; row < 8; row++) {
if (leds[col][7 - row] == 1) {
digitalWrite(rows[row], HIGH);
else {
digitalWrite(rows[row], LOW);
digitalWrite(cols[col], LOW);
void loop(){
phot = analogRead(sensePin); //чтение показаний сдатчиков
val = analogRead (potPin); //чтение показаний с датчиков
gas = analogRead(26);//чтение показаний с датчиков
dat = (125 * val) >> 8; //преобразование в температуру
Fl=analogRead(flame);
                                       // считываем значение с сенсора огня и присваиваем
его переменной "F1"
if (phot> 400 \parallel dat>45 \parallel gas>600 \parallel Fl>8) { //тут пишем пороговые значения для датчиков, когда
должен срабатывать сигнал
display(); pattern = ++pattern % numPatterns;
 }
}
```

Программа, по которой работает система

```
intflame = 0; // переменная для работы с сенсором открытого пламени
inttemp = 0; // переменная для работы с датчиком температуры LM - 35
intflamemax = 15; // настраиваемая переменная для калибровки сенсора открытого пламени
inttempmax = 70; // настраиваемая переменная для калибровки датчика температуры
void setup() {
pinMode(10,INPUT);
pinMode(11,INPUT);
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
pinMode(7, OUTPUT);
pinMode(8, OUTPUT);
pinMode(9, OUTPUT);
Serial.begin(9600); // подключаем монитор порты для настройки параметров датчиков для
точной работы в разный условиях
voidloop() {
flame = analogRead(0); // присваиваем значение с сенсора открытого пламени к переменной
temp = (analogRead(1)); // присваиваем значение с датчика температуры к переменной
Serial.print(flame);
Serial.print(", ");
Serial.println(temp);
if (temp>= tempmax) // обозначаем действие при условиях повышенной температуры
digitalWrite(2, HIGH);
digitalWrite(3, HIGH);
digitalWrite(4, HIGH);
digitalWrite(5, HIGH);
digitalWrite(6, LOW);
digitalWrite(7, HIGH);
digitalWrite(8, HIGH);
digitalWrite(9, LOW);
if (flame>= flamemax) // обозначаем действия при появлении открытого пламени
digitalWrite(2, HIGH);
digitalWrite(3, LOW);
digitalWrite(4, HIGH);
digitalWrite(5, HIGH);
digitalWrite(6, HIGH);
digitalWrite(7, HIGH);
```

```
digitalWrite(8, LOW);
digitalWrite(9, HIGH);
if (digitalRead(11) == HIGH) // работа тестовой кнопки
digitalWrite(2, HIGH);
digitalWrite(3, LOW);
digitalWrite(4, HIGH);
digitalWrite(5, HIGH);
digitalWrite(6, HIGH);
digitalWrite(7, HIGH);
digitalWrite(8, LOW);
digitalWrite(9, HIGH);
else
 {
digitalWrite(2, LOW);
digitalWrite(3, LOW);
digitalWrite(4, LOW);
digitalWrite(5, LOW);
digitalWrite(6, LOW);
digitalWrite(7, LOW);
digitalWrite(8, LOW);
digitalWrite(9, LOW);
if (digitalRead(10) == HIGH) // работа тестовой кнопки
digitalWrite(2, HIGH);
digitalWrite(3, HIGH);
digitalWrite(4, HIGH);
digitalWrite(5, HIGH);
digitalWrite(6, LOW);
digitalWrite(7, HIGH);
digitalWrite(8, HIGH);
digitalWrite(9, LOW);
 }
else
digitalWrite(2, LOW);
digitalWrite(3, LOW);
digitalWrite(4, LOW);
digitalWrite(5, LOW);
digitalWrite(6, LOW);
digitalWrite(7, LOW);
digitalWrite(8, LOW);
digitalWrite(9, LOW);
}
```

ОТЗЫВ

Ознакомившись с проектом Волошина Ильи Владиславовича по реализации проекта «Умная система эвакуации людей при пожаре и задымлении в здании «Saver» сочли проект заслуживающим внимания. Данная система является новшеством в сфере реализации работ по обеспечению безопасности в местах с массовым пребыванием людей и безусловно необходима реализация пилотной версии проекта с проведением практических испытаний на каком либо объекте.

На данный момент техническая составляющая проекта подходит для реализации на реальных объектах в связи с возможностью совмещения ее с установленными системами раннего обнаружения пожара.

Пожарная часть

Начальник пожарной части (поселок городского типа Березово)

Е.А.Ушаров